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RESEARCH ARTICLE

Efficient regionalization for spatially explicit neighborhood
delineation
Ran Wei, Sergio Rey and Elijah Knaap

Center for Geospatial Sciences, School of Public Policy, University of California, Riverside, CA, USA

ABSTRACT
Neighborhood delineation is increasingly relied upon in urban
social science research to identify the most appropriate spatial
unit. In problems of this type, the true number of neighborhoods
(typically called the k parameter) is unknown and analysts often
require algorithmic approaches to determine k endogenously.
Existing approaches for neighborhood delineation that do not
require pre-specification of a k-parameter, however, are either non-
spatial or lead to noncontiguous or overlapping regions. In this
paper, we propose the use of max-p-regions for neighborhood
delineation so that the geographic space can be partitioned into
a set of homogeneous and geographically contiguous neighbor-
hoods. In addition, we developed a new efficient algorithm to
address the computational challenges associated with solving the
max-p-regions so that it can be applied for large-scale neighbor-
hood delineation. This new algorithm is implemented in the open-
source Python Spatial Analysis Library (PySAL). Computational
experiments based on both simulated and realistic data sets are
performed and the results demonstrate its effectiveness and
efficiency.
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Introduction

An increasingly important technique in the field of GIScience is the identification of
distinct sub-regions or neighborhoods within a study area using unsupervised learning
methods. These clustering algorithms, generally categorized as regionalization methods,
aim to partition the geographic space into a set of homogeneous and geographically
contiguous regions (Openshaw and Rao 1995, Duque et al. 2007, Guo and Wang 2011,
Garreton and Sánchez 2016). As the name implies, these techniques were deployed
originally using large-scale geographic units such as counties, and the algorithms proceed
to aggregate neighboring counties, subject to some optimization criteria, into large-scale
regions. Today, regionalization algorithms might be more aptly described as ‘spatially-
constrained clustering algorithms’ as their application enjoys continued and expanded
use in neighborhood research that leverages much smaller-scale polygon data, such as
census tracts, albeit with similarly sized study areas. In these newer contexts, then, the
typical problem size for regionalization algorithms is increasing dramatically.
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One important application of spatially constrained clustering is the identification of
endogenous regions or neighborhoods where the total number, spatial configuration,
and internal composition of neighborhoods are all unknown a priori. Here, the goal is to
find the maximum number of neighborhoods, whose homogenous internal characteris-
tics demarcate it from others. While the definition of neighborhood varies across dis-
ciplines, it typically refers to ‘a contiguous territory defined by a bundle of social attributes
that distinguish it from surrounding areas’ (Spielman and Logan 2013), coinciding with
the goal of regionalization approaches (Folch and Spielman 2014). This work is becoming
increasingly prevalent thanks to two widespread applications.

The first applications are practical, in which regionalization is leveragedmethod of data
processing used to develop new primitive spatial units that have better statistical relia-
bility. The motivation, in this case, is that social surveys (e.g. the census) designed to
represent small geographies are often drawn from small sample sizes, resulting in high
error margins. A poignant example is provided by the U.S. Census American Community
Survey (ACS) whose error margins can sometimes exceed the point estimate for tract-level
geographies. To improve the reliability of these estimates, Spielman and Singleton (2015)
have advocated the identification of ‘bespoke’ neighborhoods through multivariate
clustering, which allows similar units to be grouped together until their survey estimates
reach a more reliable threshold. Adopting the advice of Spielman and Singleton, including
a connectivity constraint, and determining the appropriate number of resulting regions
endogenously ensures that appropriate primitive units get aggregated together and
helps ensure an optimal solution.

The second application is topical, in which regionalization is used to identify unique
and discrete social neighborhoods according to their demographic composition. This
body of work grows from the tradition of geodemographic analysis (e.g. Harris et al. 2005),
where multivariate clustering algorithms are applied to census data to form neighbor-
hood cluster types. In classic geodemographics, the resulting neighborhood types are
mapped, however, there is no guarantee that neighborhood types are spatially compact
or contiguous. As a result, neighborhood types can be spatially fragmented, which runs
counter to the substantive understanding of neighborhoods as organizational units for
human spatial behavior. For this reason, recent work on neighborhoods has sought to use
spatially-constrained clustering to develop more realistic depictions of discrete neighbor-
hoods. A prominent example is given by Rey et al. (2011) who use this approach to
examine the dynamic footprint of social neighborhoods over time. However, one of the
major difficulties in applying regionalization methods to neighborhood delineation is
their significant computational complexity (Spielman and Logan 2013).

In both of the above applications, data volumes, problem sizes, and the range of
substantive questions to be asked are increasing at a rapid pace. While existing regiona-
lization algorithms have been applied with success, the current approaches are also
computationally expensive and require long run times for modestly sized problems. As
such, there is a clear need for exploration and development of novel approaches to
regionalization that are scalable, efficient, and able to ingest vast amounts of data in
short cycles. In this paper, we present one such approach. We focus on one of the most
widely used regionalization methods, max-p-regions (Duque et al. 2012), and proposed
a new efficient algorithm to address the computational challenges associated with sol-
ving it. In the next section, we provide a review of existing regionalization approaches
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with a particular focus on max-p-regions. Next, the new solution algorithm is presented.
Finally, the proposed approach is applied to identifying neighborhoods in several simu-
lated datasets and census datasets, highlighting the effectiveness and efficiency of the
new regionalization approach.

Regionalization

The need to aggregate spatial units into a set of contiguous regions arises in many social and
environmental contexts, such as political districting, school districting, police patrol districting,
habitat delineation, and various zone aggregations for modeling purposes. Many regionaliza-
tion algorithms have been developed to fulfill such needs. For instance, Duque et al. (2011)
formulated a typical regionalization problem as a mixed-integer programming (MIP) model
that can be solved using general MIP solver, like GUROBI (Gurobi Optimization 2019) or GLPK
(GNU Linear Programming Kit 2012). Guo (2008) integrated contiguity constraints into hier-
archical clustering and developed the regionalization algorithmwith dynamically constrained
agglomerative clustering and partitioning (REDCAP). Li et al. (2014) developed a heuristic
method, memory-based randomized greedy and edge reassignment (MERGE), to aggregate
spatial units into p compact and contiguous regions. A detailed review on regionalization
algorithms can be found in Duque et al. (2007) and Garreton and Sánchez (2016).

Most of these regionalization algorithms require a prespecification of the number of
regions identified (Folch and Spielman 2014, Garreton and Sánchez 2016). For example,
the number of identified regions, p, is an input parameter for the p-regions model
formulated in Duque et al. (2011), p-functional-regions formulated in Kim et al. (2015),
and p-compact-regions formulated in Li et al. (2014). The users must select the level to cut
for the hierarchical clustering-based method like REDCAP in Guo (2008) and Guo and
Wang (2011). However, the users rarely know the number of regions a priori. Alternatively,
the max-p-regions proposed in Duque et al. (2012) allows the users to specify criteria that
define a region and a regionalization scheme that satisfies the criteria is identified by
solving the model. Such endogenization of the number of regions based on user-specified
criteria makes the max-p-regions approach ideally suited to identifying neighborhoods
for further statistical modeling purposes (Folch and Spielman 2014). Here we reviewed
max-p-regions model to highlight this and provide the basis for the solution algorithm
developed. Consider the following notation (Duque et al. 2012):

Parameters

i; j ¼ index of spatial units; i 2 I

k ¼ index of potential regions; k 2 K

c ¼ index of contiguity order

dij ¼ dissimilarity relationships between units i and j

li ¼ spatially extensive attribute value of unit i

T ¼ minimum value for attribute l at regional scale
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wij ¼ 1; if unit i and j share aborder
0; otherwise

�

Ni ¼ jjwij ¼ 1
� �

F ¼ 1þ log
X
i

X
j

dij

 !$ %

Decision variables:

yij ¼ 1; if units i and j belong to the same region
0; otherwise

�

xkci ¼ 1; if unit i is assigned to region k in order c
0; otherwise

�

As the number of identified regions is unknown, the potential regions are indexed by k, which
could range from 1 to the total number of spatial units. The contiguity order, indexed by c, is
used to ensure contiguity within one region. Specifically, each region has only one root unit
with a contiguity order c ¼ 0. The other units that are assigned to the same region are either
adjacent to the root unit or next to a unit that is contiguous to the root unit with a smaller
order number. In addition to the attributes that are used to describe dissimilarity between
units, the spatially extensive attribute, li, defines the size criteria that each region must satisfy,
such as the number of population and number of housing units. The number of regions is
endogenized by ensuring each region exceeds the threshold, T , on attribute l. The parameter
wij defines whether units yij 2 0; 1f g;"i; j and j are adjacent, and the Ni is the set of units that
are adjacent to unit i. Given this notation, the max-p-regions can be formulated as follows:

min �
X
k

X
i

xk0i

 !
� 10F þ

X
i

X
j

dijyij (1)

Subject to: X
i

xk0i � 1;"k (2)

X
k

X
c

xkci ¼ 1;"i (3)

xkci �
X
j2Ni

xk c�1ð Þ
j ;"i; k; c (4)

X
i

X
c

xkci li � T
X
i

xk0i ;"k (5)

yij �
X
c

xkci þ
X
c

xkcj � 1;"i; j; k (6)
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xkci 2 0; 1f g;"i; k; c (7)

yij 2 0; 1f g;"i; j
The objective, (1), has two main terms with one term maximizing the number of regions,P
k

P
i
xk0i , and the other term minimizing the total within-region dissimilarity,

P
i

P
j
dijyij.

The number of regions is multiplied by a scaling factor10F so that the goal ofmaximizing the
number of regions always dominates the goal of minimizing the total within-region hetero-
geneity. That is, a solution with larger number of regions will always be preferred over any
other solutions with smaller number of regions; for solutions with the same number of
regions, a solution with lower heterogeneity will be preferred. Constraints (2) ensure that
each region has at most one root unit. Constraints (3) specify that each unit is assigned to
exactly one region with one contiguity order. Constraints (4) require that unit i is assigned to
region k at contiguity order c if and only if one of its adjacent unit j is assigned to region k at
order c� 1. Constraints (5) ensure that the total value of spatially extensive attribute at each
region exceeds the prespecified threshold. Constraints (6) link the decision variables.
Constraints (7) impose binary restrictions on decision variables.

While only one spatially extensive attributewas included in this original formulationofmax-
p-regions, Folch and Spielman (2014) generalized it to enablemultiple attributes to be the size
constraints for identified regions. Such size constraints combined with the objective of max-
imizing the number of regions allow for the preservation of as much geographic detail as
possible. In addition, the contiguity constraints and the other objective of minimizing the
within-region heterogeneity ensure that the identified region is contiguous and as homo-
geneous as possible. These characteristicsmake themax-p-regions ideally suited for neighbor-
hood delineation.

However, the max-p-regions are NP-hard and computationally expensive to solve (Duque
et al. 2012). The largest-sized problem that can be solved optimally using exact MIP solution
method is a problem with 16 units (Duque et al. 2012). We have also tried to solve the max-
p-region problems using GUROBI, which is the most state-of-the-art commercial MIP solver,
and the results are consistent with what was reported in Duque et al. (2012). To address its
associated computational challenges, Duque et al. (2012) developed a two-phase heuristic
method with the first phase constructing the feasible solution and the second phase
improving the solution from the first phase through several different local search strategies
(greedy, simulated annealing, and tabu search). While this heuristic method makes it
computationally possible to solve practically sized problems, Duque et al. (2012) reported
that it takes several hours to obtain the best quality solutions for problems with over 3000
units. There is a clear need to develop more efficient solution approaches for the max-
p-regions in order to enable its application to large-scale neighborhood delineation.1

Solution approach

Given the computational complexity associated with solving the max-p-regions exactly
and heuristically, a new solution approach is developed to efficiently solve max-p-regions
for large-sized problems. This new solution approach is composed of three main stages:
region growth, enclave assignment, and local search. The first stage focuses on growing
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regions in a way that can maximize the number of regions; the second stage assigns
enclaves using a randomized greedy strategy; and the final stage iteratively improves the
total within-region heterogeneity through a customized simulated annealing that inte-
grates a tabu list. The overall design of the new solution approach for max-p-regions is
summarized in Figure 1. After initialization, the procedure of growing regions is repeated
for MI times as significant randomness is involved in the procedure and the resulting
partition will be different from run to run. Next, the partitions leading to the maximal
number of regions are passed to the following procedures for enclave assignment and
local search. At the end, the partition with the least within-class heterogeneity is con-
sidered to be the best solution identified. Details of the three stages are now presented.

Region growth

The purpose of the region growth phase is to identify a set of contiguous regions whose
total spatially extensive attribute exceeds the threshold. The flow chart for region growth
is shown in Figure 2. It starts by randomly selecting an unassigned unit as the seed unit for
a region and then iteratively adds the unassigned neighbors of the units in the region
until it reaches the threshold or no unassigned neighbor can be found. If the region
formed fails to reach the threshold, all the units assigned to the region are referred to as
‘enclave’ and are added to the enclave set. This process is repeated until all units have
been either assigned to a region or included in the enclave set. At the end of this phase,
we will identify a set of contiguous regions whose spatially extensive attribute exceeds
the prespecified threshold and a set of enclaves.

This phase focuses on identifying as many regions as possible and does not account for
the attribute dissimilarity between units, both significant design differences from the
region growth algorithm proposed in Duque et al. (2012) that grows region by iteratively
including the neighboring unit that minimizes the total within-class dissimilarity. As the

Figure 1. Flow chart of the new solution approach.
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number of identified regions is determined in this phase and will not be modified in the
following two phases, it is important to devise the region growth strategy so that the
number of regions can be maximized. The computational results in the next section show
that this new algorithm can identify more compact regions and results in a much larger
number of regions found.

Enclave assignment

The goal of the enclave assignment phase is to assign the enclaves to the regions
identified in the region growth phase (Figure 3). It starts by randomly selecting a unit in
the enclave set and then if any of its neighbors has been assigned to a region, the
dissimilarity between the enclave and all neighboring regions is computed and the
enclave will be randomly assigned to one of the neighboring regions with the
N smallest dissimilarity. This process is repeated until all enclaves have been assigned
to a region. At the end of this phase, we will identify a feasible solution for the max-
p-regions problem where each region satisfies the contiguity and spatial threshold
constraints and the identified regions are a complete partition for the spatial units.

This enclave assignment strategy is different from the greedy enclave assignment in
Duque et al. (2012) where each enclave will be assigned to the neighboring region with
the smallest dissimilarity. The strategy of randomly choosing one of the best candidates
but not necessarily the top candidate is generally referred to as randomized greedy
algorithm. It was first introduced by Feo and Resende (1995) in the Greedy Randomized
Adaptive Search Procedure (GRASP) to increase solution diversity while not necessarily
compromising the solution quality in the initial solution construction. Given such

Figure 2. Flow chart of region growth.

Figure 3. Flow chart of enclave assignment.
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superiority to traditional greedy algorithm, this randomized greedy strategy has been
applied in a range of regionalization problems (González-Ramírez et al. 2011; Cano-
Belman et al. 2012, Li et al. 2014).

Local search

After identifying a good initial feasible solution in the first two phases, we design a local
search algorithm to improve the solution’s total within-class heterogeneity by iteratively
moving a spatial unit from its current region (donor region) to a neighboring region
(recipient region) while ensuring the solution’s feasibility. The flow chart for the local
search algorithm is depicted in Figure 4. This algorithm follows the general design of
simulated annealing (SA) that simulates the process of heating a material and then slowly
lowering the temperature to control defect. Duque et al. (2012) has implemented the SA
to solve the max-p-regions problem. Specifically, given a feasible solution the SA algo-
rithm identifies all candidate units that can move to a neighboring region without
violating the contiguity and threshold constraints, and then randomly selects one candi-
date unit. If this move can reduce the total heterogeneity, it is accepted; otherwise, the
nonimproving move is accepted with a probability defined by Boltzmann’s equation,

p ¼ e�ΔH=t , where ΔH is the total heterogeneity change due to this move and t is the
current temperature. This process is iterated with t gradually decreasing at a cooling rate
α until t reaches a prespecified value.

Our new algorithm introduces several significant changes to the original SA algorithm.
First, our algorithm dynamically updates a list of potential units that can move to
a neighboring region without violating the contiguity and threshold constraints, rather
than recompute the potential units at each iteration. Identifying movable units is

Figure 4. Flow chart of local search.
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computationally intensive because for each unit we need to check whether losing the unit
will break the spatial threshold constraint and whether it will leave the remaining units in
the region to be unconnected. Our algorithm recomputes the movable units only when
the list of potential units is empty. Otherwise, the list is updated after each move by
removing the moved unit, and all the units in the donor and recipient region. This will
ensure the remaining units in the list are still able to move without violating the
constraints. Second, once the potential unit is selected, only the best possible move is
considered for further assessment, rather than any possible move. That is, only the
neighboring region with the smallest dissimilarity could be the recipient region. As the
solution diversity is maintained by randomly selecting a candidate unit, allowing the best
move only could lead to faster convergence to high-quality solution. Third, a tabu list is
integrated in the criteria for accepting nonimproving moves. The tabu list that represents
a list of banned moves is used in tabu search algorithm to discourage the search from
coming back to previously visited solution (Glover 1989). Li et al. (2014) show that once
a nonimproving move is made near the algorithm completion, the search oscillates
among a small set of solutions that consist of reverse moves of previous improving
moves. We therefore construct the tabu list by iteratively adding the reverse moves of
improving moves to prevent this and result in faster convergence. A nonimproving move
is made only when it is not in the tabu list and the Boltzmann’s probability is larger than
a random value. The tabu list has a prespecified length limiting the number of moves that
can be accommodated in the list and takes the queue strategy when the list is full. Finally,
our algorithm allows for termination when all of the previous NC potential moves selected
are nonimproving, rather than only in the case where the temperature t reaches
a predefined value. This termination condition is consistent with the condition for tabu
search in Duque et al. (2012). Computational experiments show this termination condition
could lead to better-quality solutions.

In addition to the SA, Duque et al. (2012) also tested tabu search and greedy algorithms
for local search. They reported that the tabu search can identify the best solutions in most
scenarios but it is much more computationally expensive, whereas the simulated anneal-
ing and greedy algorithms are computationally efficient but lack the capacity to identify
the best solutions. This new local search algorithm combines the strengths of tabu search
and simulated annealing with the aim of identifying better-quality solutions and improv-
ing computational efficiency.

Results

We performed a series of computational experiments to assess the performance of the
proposed approach for solving the max-p-regions problem. The data sets are retrieved
from sample data in the ClusterPy library for regionalization research (Duque et al. 2011).
The data include four simulated data sets, which are regular lattices with 100, 529, 1024,
2025 units, and two realistic datasets, which are 58 counties in California and 3106
connected counties in the U.S. The attribute value to measure the dissimilarity dij for
the regular lattices is simulated using a spatial autoregressive process with p ¼ 0:9,
whereas the spatial extensive attribute value li is simulated using a uniform distribution
of [10, 15]. Three different threshold values T = 100, 300, and 500 are tested for the
simulated data set. The attribute dissimilarity dij is also simulated for the counties in
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California but median household income is used for the counties in the U.S. The spatial
extensive attribute value li is the population for the counties in California and the number
of household units for the counties in the U.S. Three different threshold values
T = 100,000, 300,000, and 500,000 are tested for the two realistic data sets. The algorithms
are implemented using Python, and experiments are conducted on an Intel Core i7-6600
(2.60 GHz) computer running Windows with 16 GB RAM. The algorithm will be included in
the next release of the open-source Python Spatial Analysis Library (PySAL).

As the number of identified regions is determined in the region growth phase, we first
run the new region growth algorithm 999 times for each combination of dataset and
threshold to compare the number of regions with what is found using the region growth
approach in Duque et al. (2012). The results show that our new region growth algorithm
identified larger number of regions for all datasets and thresholds except the dataset of
counties in California (Figure 5). This is likely due to its small number of spatial units. For
example, the number of regions identified by our new algorithm for the 2025 unit regular
lattice with T ¼ 100 ranges from 198 to 213 during the 999 runs, whereas that by the
approach in Duque et al. (2012) ranges from 187 to 205. For the U.S. counties dataset with
T ¼ 500; 000, the number of regions identified by the new algorithm varies from 148 to
165 during the 999 runs, whereas that by the approach in Duque et al. (2012) ranges from
137 to 154. Clearly, our new algorithm generally dominates the approach in Duque et al.
(2012) in terms of number of regions identified. Next, for each partition with the max-
imum number of regions, we assign enclave using our new algorithm to generate initial
feasible solutions. The computational time of region growth (999 runs) and enclave
assignment for the new algorithm and the original algorithm is reported in Table 1.
Clearly, the new region growth algorithm is more computationally efficient than that in
Duque et al. (2012) because the new region growth algorithm does not account for the
attribute dissimilarity while the original algorithm requires the identification of the
neighboring unit that minimizes the total within-class dissimilarity at each iteration. The
enclave assignment strategies for both algorithms are efficient and really depend upon
the number of partitions that are identified with the maximum number of regions and are
passed to the enclave assignment phase.

While several different local search algorithms are used in Duque et al. (2012), tabu search
generally identified the best quality solutions. As a result, we only compare our local search
algorithm with the tabu search in Duque et al. (2012). In order to make the results compar-
able, we run our local search algorithm and tabu search with the same feasible solution
generated in previous stages. Each of the local search algorithms is run 10 times and the
best solution is reported. The computational results are reported in Table 2. The column
‘Total heterogeneity reduction’ is defined as:

Total heterogeneity reduction ¼ h inital solutionð Þ � h final solutionð Þ
h inital solutionð Þ (8)

where h represents the total within-class heterogeneity to evaluate the improvement of total
within-class heterogeneity by local search algorithms. Duque et al. (2012) also employed the
total heterogeneity reduction (8) to compare multiple local search algorithms. For datasets
lattice 100, lattice 529, and California counties, our new local search algorithm leads to an
average of 10.92%, 1.47%, 11.12%more total heterogeneity reduction for all three thresholds,
respectively. For lattice 1024, our new local search algorithm results in 2.19% and 3.34%more
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total heterogeneity reduction for T ¼ 100 and 500, respectively. For lattice 2025, it performs
0.18% and 0.39% better for T ¼ 300 and 500, respectively. For US counties, tabu search
performs better for all three thresholdswith 0.72%, 1.62% and 0.55%more total heterogeneity
reduction. This is not very surprising given the extensive search space of tabu search (Grover
1989; Edelkamp and Schrödl 2012). Column ‘Running time’ reports the computational time to
run the local search algorithm. The tabu search takes more time in all scenarios except one for
lattice 100 and one for California counties. The speedup of our new local search algorithm
compared with tabu search is substantial for larger data sets. For example, the speedup for

Figure 5. Distribution of the number of identified regions by the new region growth algorithm and the
algorithm in.Duque et al. (2012).
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lattice 2025 ranges from 12 to 118 and for US counties it ranges from 22 to 92. This suggests
that our new local search algorithm is much more computationally efficient but can still
guarantee the great solution quality in comparison with tabu search.

In addition to comparing the new algorithm and the original algorithm by phase to
phase, we also conducted an end-to-end comparison by running the two complete algo-
rithms with the same input data, and reported the final objective values (Equation 1), and
total computational time in Table 3. Clearly, the new algorithm identifies better solutions
with the same or lower objective value for all test datasets due to themuch larger number of
identified regions and generally smaller total within-region homogeneity. The

Table 1. Computational time of region growth and enclave assignment for the new algorithm and the
algorithm in Duque et al. (2012).

Region growth time (seconds) Enclave assignment (seconds)

Dataset Threshold New algorithm Duque et al. (2012) New algorithm Duque et al. (2012)

Lattice 100 100 0.37 1.87 0.07 0.02
Lattice 100 300 0.79 1.93 0.16 0.37
Lattice 100 500 1.02 2.06 1.36 0.24
Lattice 529 100 2.50 10.52 0.66 0.05
Lattice 529 300 3.33 11.26 1.44 0.16
Lattice 529 500 3.48 12.90 1.09 0.19
Lattice 1024 100 4.17 21.08 0.12 0.12
Lattice 1024 300 4.88 24.65 0.15 0.14
Lattice 1024 500 6.00 27.59 0.30 0.23
Lattice 2025 100 8.22 45.16 0.43 0.15
Lattice 2025 300 7.85 56.74 0.40 0.40
Lattice 2025 500 8.58 71.56 0.14 0.43
CA counties 100,000 0.80 0.72 0.03 0.03
CA counties 300,000 0.34 0.91 0.02 0.01
CA counties 500,000 0.28 0.91 0.01 0.01
US counties 100,000 12.69 99.05 0.36 0.22
US counties 300,000 12.36 245.52 0.29 1.72
US counties 500,000 15.25 473.18 0.32 1.43

Table 2. Computational results of new local search algorithm and tabu search algorithm.
Total heterogeneity reduction Running time (seconds)

Dataset Threshold New algorithm Tabu search New algorithm Tabu search

Lattice 100 100 30.99% 13.12% 0.24 2.67
Lattice 100 300 12.99% 11.37% 0.17 0.14
Lattice 100 500 32.32% 19.04% 0.83 4.66
Lattice 529 100 30.10% 29.66% 2.69 124.24
Lattice 529 300 23.17% 22.31% 3.09 17.50
Lattice 529 500 28.24% 25.12% 6.79 27.01
Lattice 1024 100 24.58% 22.40% 5.66 53.80
Lattice 1024 300 25.08% 26.87% 11.18 67.35
Lattice 1024 500 21.17% 17.82% 7.71 36.77
Lattice 2025 100 28.00% 28.46% 13.27 1560.19
Lattice 2025 300 24.12% 23.94% 20.39 240.00
Lattice 2025 500 25.84% 25.45% 28.90 1262.35
CA counties 100,000 17.82% 2.59% 0.09 0.04
CA counties 300,000 36.78% 29.79% 0.13 0.13
CA counties 500,000 42.64% 31.52% 0.11 0.88
US counties 100,000 28.54% 29.26% 39.66 3641.65
US counties 300,000 27.99% 29.62% 39.70 887.40
US counties 500,000 21.30% 21.85% 72.38 3383.63
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computational gain in comparison with the original algorithm is significant and the average
computational speedup of the new algorithm is 13. The identified neighborhoods for Lattice
100 with 100 threshold and US counties with 500,000 are presented in Figure 6.

Discussion and Conclusions

The last several decades have borne witness to three important trends in urban social
science. The first–rapidly expanding data resources–is not limited to the urban context.
Indeed, in recent years exploding volumes of data have led to the rapid development
of techniques for both Big Data analysis and the data pipelining process. In urban
research, however, this trend is also accompanied by (1) an increasing topical focus on
neighborhoods and the important roles they play in human development and global
sustainability, and (2) an increasing awareness of linked and multilevel spatial pro-
cesses and the development of analytical techniques used to study them (Raudenbush
and Bryk 2002, Raudenbush 2003, Harris et al. 2007, She et al. 2017, Zhong et al. 2019).
In practice, these trends mean that the problem size in quantitative geography is
increasing by orders of magnitude. Put differently, researchers today seek answers to
questions about multiscalar neighborhood growth and change, persistent neighbor-
hood inequality in high-performing economies, or neighborhood processes that link
together places, actors and institutions within a single modeling framework.
Addressing these challenges requires not only increasingly powerful computational
platforms but also more efficient and performant implementations of the fundamental
algorithms for urban neighborhood research. In this paper, we present one such
advance.

The max-p-regions algorithm is designed to partition a study area into the largest
possible set of mutually exclusive regions (or neighborhoods) that still satisfy an internal
homogeneity constraint. Since its inception in 2012 (Duque et al. 2012a), the max-
p-regions algorithm has been applied in a range of urban and social contexts including

Table 3. Computational results of the new algorithm and the original algorithm in Duque et al. (2012).
Objective value (Equation (1)) Total running time (seconds)

Dataset Threshold New algorithm Duque et al. (2012) New algorithm Duque et al. (2012)

Lattice 100 100 −1.10E+11 −1.10E+11 0.70 4.58
Lattice 100 300 −4.00E+10 −3.00E+10 1.13 2.46
Lattice 100 500 −2.00E+10 −2.00E+10 3.24 6.98
Lattice 529 100 −5.80E+14 −5.50E+14 5.99 134.93
Lattice 529 300 −2.00E+14 −1.80E+14 7.97 29.02
Lattice 529 500 −1.20E+14 −1.10E+14 11.47 40.20
Lattice 1024 100 −1.08E+17 −1.05E+17 10.10 75.26
Lattice 1024 300 −3.90E+16 −3.50E+16 16.47 92.37
Lattice 1024 500 −2.40E+16 −2.10E+16 14.29 64.81
Lattice 2025 100 −2.13E+18 −2.05E+18 22.43 1605.93
Lattice 2025 300 −7.70E+17 −6.80E+17 29.18 297.72
Lattice 2025 500 −4.70E+17 −4.00E+17 38.05 1334.72
CA counties 100,000 −4.10E+08 −4.00E+08 1.17 1.01
CA counties 300,000 −2.90E+08 −2.90E+08 0.58 1.23
CA counties 500,000 −2.50E+08 −2.40E+08 0.53 1.97
US counties 100,000 −5.49E+27 −5.39E+27 139.35 3819.14
US counties 300,000 −2.49E+27 −2.35E+27 139.52 1217.11
US counties 500,000 −1.66E+27 −1.53E+27 184.67 3949.14
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urban slum delineation (Duque et al. 2012b), neighborhood dynamics (Rey et al. 2011),
urban energy assessment (Reyna et al. 2016), regional inequality analysis, and more
recently has been extended to problems that address network connectivity (She et al.
2017) and interregional comparisons (Rey and Sastré-Gutiérrez 2010). Despite the impor-
tant findings advanced by these studies, we argue that the current implementation is

Figure 6. Neighborhood delineation; (a) Lattice 100 with 100 threshold; (b) US counties with 500,000
threshold.
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waning in utility since it is unable to accommodate the massive data requirements
inherent in modern urban scholarship.

In this paper, we have developed a new solution algorithm for max-p that can sub-
stantially reduce its computation time, and thus facilitates a much broader set of use-cases
and larger volume of input data. For metropolitan-scale comparative work that typically
requires several large datasets and potentially a dozen or more model runs to include
multiple specifications, robustness checks (and potential for pilot errors), this means that
scholars are now able to leveragemax-p to address research problems in hours or days that
would previously take weeks or months. Beyond its substantial improvement in runtime,
however, our new algorithm also improves solution quality substantially by identifying
much larger number of regions that also realize smaller within-region heterogeneity in
comparison with the original algorithm in Duque et al. (2012).

Note

1. GeoDa contains a highly performant C++ implementation of max-p (https:https://geodacen
ter.github.io/workbook/8_spatial_clusters/lab8.html). We choose to implement our
enhanced version in Python in order to compare it with the original PySAL implementation
which was also implemented in Python. This lets us efficiently explore a prototype and
alternative experimental designs.
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